Exploring Unconventional Gas and Oil Resources

Exploring Unconventional Gas and Oil ResourcesThe nation’s energy demands continue to rise each year and while oil and natural gas comprise over 60 percent of our energy portfolio, conventional resource deposits are becoming scarcer.

According to the Department of Energy’s National Energy Technology Laboratory (NETL) our nation’s demand for natural gas alone is expected to grow as much as 50 percent by 2025. In order to sustain that growth while reducing our reliance on imports, unconventional gas and oil resources are beginning to play a significant role in securing our energy future.

Unconventional resources typically span large areas of poorly understood geologic formations such as ultra-deep reservoirs, low-permeability formations, and environmentally sensitive areas. Currently the most substantial volume of unconventional natural resources can be found in the form of coal-bed methane, tight sands, gas shales, and oil shales.

Coal-bed methane is a form of natural gas found in coal seams, which can retain six times more gas than an equivalent volume of rock in a conventional formation. Tight sands are sandstone formations that are ‘tight’ or have very low permeability. Shale gas refers to natural gas trapped in shale layers of sedimentary rock formations. Oil shales are also recognized as a significant unconventional source of oil with major deposits in the United Sates and worldwide. Again, these unconventional formations have much lower permeability than the rocks that make up conventional reservoirs.  

New technologies, improved petrophysical knowledge, and increased commodity prices make it more possible than ever to tap into these oil and gas reserves. However, sustainable recovery within unconventional formations depends on technological developments and a focused research effort.

In order to better explore issues with unconventional gas recovery, petroleum and natural gas faculty at Penn State recently launched a research consortium dedicated to providing the framework for a collaborative research effort in this area. The Unconventional Natural Resources Consortium (UNRC) is housed in the EMS Energy Institute and co-directed by Dr. Luis F. Ayala H., associate professor, petroleum and natural gas engineering, and Dr. Russell T. Johns, professor, petroleum and natural gas engineering.

Begun in 2011, the UNRC is a research effort between industry and academia with the goal of providing support for cutting-edge research in the area of unconventional gas resource exploration and development. In addition, the consortium will provide invaluable experience for graduate students specializing in the area of petroleum and natural gas engineering. Students will have an opportunity to interact with industry representatives on research and the UNRC will help guarantee a well-trained future workforce for the hydrocarbon industry.

Penn State has identified natural gas engineering and unconventional gas research as a core endeavor and the importance of this research is apparent when we consider the vast amount of resources locked in these complex formations. For example, taking into account only the Marcellus and Utica shale formations, estimated recoverable gas reserves in Pennsylvania and the Appalachian Basin are some of the largest in the world.

The UNRC research projects will focus on the reservoir engineering areas of unconventional natural gas exploration and production technology, with an emphasis on shale gas, tight gas, and shale oil formations as well as closely related areas. In order to ensure the research remains highly relevant to industry, members are encouraged to provide research topics and data. The consortium will also provide practical analytical models and software for members to analyze unconventional plays.


For more information on UNRC visit www.energy.psu.edu/unrc.

Issue Number: 
4